A06B-0502-B068 交流伺服MDL 20

b068 #7000 FANUC电机交流伺服
制造商:发那科
模型(s): a06b – 0502 b068 # 7000
附加信息:电机交流伺服
预计运输规模
外形尺寸:263 × 58 × 28mm
重量:.4.3公斤
原产国:美国

分类:
  • 购买咨询热线/Phone:18859254943
  • 邮箱/Email:sales@ygdcs.com
  • 地址:成都高新区天益街北巷52号附14号2层

描述

A06B-0502-B068 交流伺服MDL 20

b068 #7000 FANUC电机交流伺服
制造商:发那科
模型(s): a06b – 0502 b068 # 7000
附加信息:电机交流伺服
预计运输规模
外形尺寸:263 × 58 × 28mm
重量:.4.3公斤
原产国:美国

交流伺服电机在结构上与单相异步电机相似,其定子铁芯上放置有一个空间差为90°电角的两相绕组。一种是磁场绕组,另一种是控制绕组。电动机工作时,励磁绕组接单相交流电压,控制绕组接控制信号电压,要求两相电压频率相同。

交流伺服电机的转子有两种结构形式。一种是笼型转子,它类似于普通三相异步电动机的笼型转子,但形状更细长,减小了转子的转动惯量,降低了电动机的机电时间常数。笼式转子交流伺服电机体积大,气隙小,所需励磁电流小,功率因数高,电机的机械强度大,但快速响应性能略差,低速运行不够平稳。

另一种是无磁空心杯形转子,该转子采用杯形结构制成,为了减少气隙,在杯形转子中有一个内部定子,内部定子不设置在绕组上,只起磁性作用,转子由铝或铝合金制成,杯壁厚度为0.2~0.8mm,转动惯量小而具有较大的阻力。空心杯转子交流伺服电机具有响应快、运行平稳等优点,但其结构复杂,气隙大,负载电流大,功率因数低。

在交流伺服电机中,除了要求电机不能“旋转”外,还要求改变施加在控制绕组上的电压的大小和相位,以改变电机转速的大小和方向。

根据旋转磁动势理论,励磁绕组与控制绕组相互作用产生旋转磁场,旋转磁场的方向由相位超前绕组变为相位延迟绕组。改变控制绕组中控制电压的相位,可以改变两相绕组的超前滞后关系,从而改变旋转磁场的旋转方向,交流伺服电机的速度方向也会发生变化。改变控制电压的大小和相位,可以改变旋转磁场的磁通,从而改变电机的电磁转矩,交流伺服电机的转速也会发生变化。

交流电动机的调速方法包括幅值控制、相位控制和幅值相位控制。

(1)幅值控制是通过改变控制电压Uc的幅值来控制电机的转速,且Uc的相位始终不变,使控制电流Ic与励磁电流If保持90°电角的相位关系。如果Uc=0,则转速为0,电机停止。

(2)相位控制是通过改变控制电压Uc的相位来控制电机的转速,从而改变控制电流Ic与励磁电流If之间的相角,此时控制电压Uc的大小保持不变。当两相电流Ic与If相角为0°时,转速为0,电机停止。

(3)幅相控制是指通过同时改变控制电压Uc的幅值和Ic与If之间的相位角来控制电机的转速。具体方法是将移相电容C串入励磁绕组回路,接稳压器U1,则励磁绕组上的电压Uf = U1- uef。在控制绕组中加入与U1相同的控制电压Uc,当改变控制电压Uc的幅值来控制电机转速时,由于转子绕组与励磁绕组之间存在耦合,励磁绕组的电流If也会随着转速的变化而变化,励磁绕组两端的电压Uf和电容C上的电压Uef也会随之变化。这种Uc幅值的变换改变了Uc和Uf的幅值,以及它们与对应电流的相位角。
在三种控制方法中,虽然幅相控制的机械特性和调节特性最差,但由于该方法使用的控制设备简单,不需要移相装置,因此应用最为广泛。

A06B-0502-B068 交流伺服MDL 20

A06B-0502-B068#7000 FANUC Motor AC servo
Manufacturers :FANUC
Model(s)  :A06B-0502-B068#7000
Additional Information :Motor AC servo
Estimated Shipping Size
Dimensions: 263 × 58 × 28mm
Weight:.4.3 kg
Country of Origin: United States of America

The AC servo motor is similar in structure to a single-phase asynchronous motor, and its stator core is placed with a two-phase winding with a space difference of 90° electrical Angle. One is the field winding and the other is the control winding. When the motor is working, the excitation winding is connected to the single-phase AC voltage, and the control winding is connected to the control signal voltage, and the two phase voltages are required to be of the same frequency.

The rotor of AC servo motor has two structural forms. One is the cage rotor, which is similar to the cage rotor of the ordinary three-phase asynchronous motor, but it is more slender in shape, which reduces the moment of inertia of the rotor and reduces the electromechanical time constant of the motor. The cage-rotor AC servo motor is large, the air gap is small, the required excitation current is small, the power factor is high, the mechanical strength of the motor is large, but the fast response performance is slightly poor, and the low speed operation is not smooth enough.

The other is a non-magnetic hollow cup-shaped rotor, the rotor is made of a cup-shaped structure, in order to reduce the air gap, there is an internal stator in the cup-shaped rotor, the internal stator is not set on the winding, only plays a magnetic role, the rotor is made of aluminum or aluminum alloy, the cup wall thickness of 0.2~0.8mm, the moment of inertia is small and has a large resistance. Hollow cup rotor AC servo motor has the advantages of fast response and smooth operation, but it has complex structure, large air gap and large load current, and low power factor.

In an AC servo motor, in addition to the requirement that the motor cannot “rotate”, it is also required to change the size and phase of the voltage applied to the control winding to change the size and direction of the motor speed.

According to the theory of rotating magnetomotive force, a rotating magnetic field is produced by the interaction of the exciting winding and the control winding, and the direction of the rotating magnetic field is changed from the phase advanced winding to the phase delayed winding. Changing the phase of the control voltage in the control winding can change the lead-lag relationship of the two-phase winding, so as to change the rotation direction of the rotating magnetic field, and the speed direction of the AC servo motor will also change. Changing the size and phase of the control voltage can change the flux of the rotating magnetic field, thus changing the electromagnetic torque of the motor, and the speed of the AC servo motor will also change.

The speed control methods of AC motor include amplitude control, phase control and amplitude phase control.

(1) Amplitude control is to control the speed of the motor by changing the amplitude of the control voltage Uc, and the phase of Uc is always unchanged, so that the control current Ic and the excitation current If maintain the phase relationship of 90° electrical Angle. If Uc=0, the speed is 0 and the motor stops.

(2) Phase control is to control the speed of the motor by changing the phase of the control voltage Uc, so as to change the phase Angle between the control current Ic and the excitation current If, in this case, the size of the control voltage Uc remains unchanged. When the phase Angle between the two-phase current Ic and If is 0°, the speed is 0 and the motor stops.

(3) Amplitude and phase control means to control the speed of the motor by simultaneously changing the amplitude of the control voltage Uc and the phase Angle between Ic and If. The specific method is to string a phase-shifting capacitor C into the excitation winding loop, and then connect to the voltage regulator U1, then the voltage Uf on the excitation winding = U1-UEF. The same control voltage Uc as U1 is added to the control winding, then when the amplitude of the control voltage Uc is changed to control the motor speed, due to the coupling between the rotor winding and the excitation winding, the current If of the excitation winding will also change with the change of the speed, and the voltage Uf at both ends of the excitation winding and the voltage Uef on the capacitor C will also change. Such transformation of Uc amplitude changes the amplitude of Uc and Uf, as well as the phase Angle between them and the corresponding current.
Among the three control methods, although the mechanical and regulatory characteristics of amplitude-phase control are the worst, it is the most widely used because of the simple control equipment used in this method and the absence of phase shifting devices.

 

1769-OF8V Allen-Bradley可编程控制器模块 5069- l310er Allen-Bradley八(8)5069 I/O模块
横河AAI141模拟输入模块 2715P-T10CD Allen-Bradley触摸屏操作终端
330103-00-04-10-02-05 Bently Nevada 3300 XL 8毫米接近探头 NBRA-656C ABB制动直升机
Allen-Bradley Kinetix 5700双轴伺服驱动器 FSCA-01 ABB RS-485适配器模块
Allen-Bradley集成轴模块 22F-D4P2N103艾伦布拉德利可调频率交流驱动器
1756-OF8A艾伦布拉德利模拟输出模块 2080-LC50-24AWB艾伦布拉德利Micro850 24点控制器
1756-IF8A Allen-Bradley 8通道电压/电流输入 IC693BEM330 GE FIP Bus接口模块
1606-XLB240E艾伦-布拉德利基本开关模式电源 Allen-Bradley变频交流驱动
5069- l306er Allen-Bradley八(8)5069 I/O模块 2080-LC50-24QBB艾伦布拉德利紧凑型控制器
16(16)直流输出通道 Allen Bradley PowerFlex 523系列紧凑型驱动器
1788-EN2DNR Allen-Bradley以太网I/P到DeviceNet连接设备 22C-D038A103艾伦布拉德利交流Powerflex 400驱动器